Anhang I: Einschätzung und Berechnung der Klimawirkung Hintergrundinformationen zu THG, Quellen und der Berechnung der Klimawirkung

Treibhausgase (THG) und Beispiele für anthropogene Quelle:

CO₂ Kohlenstoffdioxid Verbrennung fossiler Energieträger (v.a. Kohle, Erdöl, Erdgas)

CH₄ Methan Viehhaltung (insbes. Rinder, ca. 150-250 | CH₄ pro Rind/Tag)

Anbau von Reis (Nassreisanbau)

Erdgas (-Förderung, -Aufbereitung, -Transport) Trockenlegung von Mooren, Moorbrände

Mülldeponien (ohne Abdichtung, Belüftung und CH₄-Verbrennung Methan ist 25 bis 30-mal so wirksam wie Kohlendioxid (s. Fußnote 1)

N₂O Lachgas Viehhaltung (Viehdung, indir. Emissionen aus Futtermittelanbau)

Einsatz von Stickstoffdüngern Verbrennung von Biomasse Umbruch von Grünland

Abgasnachbehandlung in Dieselmotoren

Lachgas ist 298-mal so wirksam wie Kohlendioxid (s. Fußnote

<u>Abkürzungen</u>

THG Treibhausgase Gase, die zur Klimaerwärmung beitragen, wie z. B.

Kohlenstoffdioxid (CO₂) oder Methan (CH₄)

CO_{2äq} Treibhausgasäquivalente Maßeinheit zur Vereinheitlichung der Klimawirkung

unterschiedlicher Treibhausgase¹

UBA Umweltbundesamt Die zentrale Umweltbehörde der Bundesrepublik

Deutschland.

Hinweis:

Die nachfolgend aufgelisteten Treibhausgas-Emissionsfaktoren berücksichtigen sowohl die **indirekten THG** (Vorkette und Hilfsenergie)², als auch die **direkten THG-Emissionen** aus der Bereitstellung von Endenergie für den Anlagenbetrieb. So entsteht in der Stromerzeugung aus Windenergie (an Land) ein kleiner Anteil an indirekten THG-Emissionen, die z.T. der Produktion der Windenergieanlage (WEA) zuzurechnen sind (10,5 g CO₂äq/kWh; Vgl. Tabelle 2). Der reine Betrieb der WEA ist verursacht jedoch keine direkten THG, weshalb die Stromerzeugung aus Windenergie gegenüber anderen Technologien klimafreundlich ist.

¹ Neben dem wichtigsten von Menschen verursachten Treibhausgas Kohlendioxid (CO₂) gibt es weitere Treibhausgase (THG) wie beispielsweise Methan oder Lachgas. Die verschiedenen Gase tragen nicht in gleichem Maße zum Treibhauseffekt bei und verbleiben über unterschiedlich lange Zeiträume in der Atmosphäre. Um die Wirkung verschiedener Treibhausgase vergleichbar zu machen, hat das IPCC-Expertengremium das so genannte «Globale Erwärmungspotenzial» (Global Warming Potential; GWP 100) definiert. Dieser Index drückt die Erwärmungswirkung einer bestimmten Menge eines Treibhausgases über einen festgelegten Zeitraum (meist 100 Jahre) im Vergleich zu derjenigen von CO₂ aus. So hat z.B. Methan eine ca. 25× größere Klimawirkung als CO₂, bleibt aber weniger lange in der Atmosphäre. Die Klimawirkung von Lachgas übersteigt die von CO₂ sogar um beinahe das 300fache. Beide THG können so in CO₂-Äquivalente umgerechnet und zusammengefasst werden.

² d. h. alle relevanten Emissionen von der Gewinnung, der Aufbereitung und dem Transport der Brennstoffe über die Herstellung der Anlagen, bis zum Einsatz von fremdbezogener Hilfsenergie im Anlagenbetrieb.

1. THG-Emissionsfaktoren in der Wärmebereitstellung (Tabelle 1)

Energieträger	CO _{2äq} g/kWh	Quelle
Brennholz (Kessel)	16,59	UBA 2019 ^{Tab66}
Solarthermie (Flachkollektor)	21,69	UBA 2019 ^{Tab104}
Pellets (Kessel)	22,91	UBA 2019 Tab66
Brennholz (Einzelfeuerung)	25,69	UBA 2019 Tab66
Holzhackschnitzel (gr. Kessel)	25,76	UBA 2019 Tab66
Solarthermie (Vakuumröhrenk.)	26,33	UBA 2019 ^{Tab104}
Erdgas-Wärmepumpe (Luft/Wasser)	53,66	UBA 2019 ^{Tab109}
Biogas (Abfall, Reststoffe)	94,35	UBA 2019 ^{Tab91}
Biogas (Gülle, BHKW)	112,43	UBA 2019 ^{Tab91}
Biogas (Energiepflanzen, BHKW)	147,62	UBA 2019 ^{Tab91}
Elektro-Wärmepumpe (geothermisch)	175,35	UBA 2019 ^{Tab109}
Elektro-Wärmepumpe (hydrothermisch)	185,89	UBA 2019 ^{Tab109}
Elektro-Wärmepumpe (Luft/Wasser)	200,58	UBA 2019 ^{Tab109}
Flüssiggas	239,00	BAFA 2019
Erdgas	246,43	UBA 2019 Tab 62
Elektro-Wärmepumpe (Abluft/Wasser)	247,01	UBA 2019 Tab 62
Heizöl	317,94	UBA 2019 ^{Tab 62}
Strom (für z.B. Nachtspeicheröfen)	550,97	UBA 2019 ^{Tab 62}

2. THG-Emissionsfaktoren in der Stromerzeugung (Tabelle 2)

Energieträger	CO _{2äq} g/kWh	Quelle
Wasserkraft (Laufwasser)	2,702	UBA 2019 ^{Tab23}
Windenergie (auf See/offshore)	5,998	UBA 2019 ^{Tab19}
Klärschlamm (Dampfturbine)	8,438	UBA 2019 ^{Tab33}
Windenergie (an Land/onshore)	10,497	UBA 2019 ^{Tab15}
Kernenergie	22,37	UBA 2019 ^{Tab 7}
Wasserkraft (Speicherwasser)	25,064	UBA 2019 ^{Tab23}
Deponiegas (TA-Luft)	48,985	UBA 2019 ^{Tab53}
Klärgas (BHKW, TA-Luft)	52,96	UBA2019 ^{Tab48}
Photovoltaik	66,73	UBA 2019 ^{Tab10}
Biogas ³ (Abfall, Reststoffe), BHKW TA-Luft	110,79	UBA2019 ^{Tab38}
Biomethan (Abfall, Reststoffe)	115,99	UBA2019 ^{Tab38}
Biogas (Gülle), BHKW TA-Luft	128,86	UBA2019 ^{Tab38}
Biomethan (Gülle)	136,67	UBA2019 ^{Tab38}
Biogas (Energiepflanzen), BHKW TA-Luft	164,05	UBA2019 ^{Tab38}
Biomethan ⁴ (Energiepflanzen)	175,81	UBA2019 ^{Tab38}
Tiefengeothermie	182,6	UBA2019 ^{Tab28}
Biogas (Energiepflanzen), BHKW Baurecht	188,43	UBA2019 ^{Tab38}
Biogas (Gülle), BHKW nach Baurecht	208,23	UBA2019 ^{Tab38}
Erdgas	242,65	UBA 2019 ^{Tab 7}
Öl	315,47	UBA 2019 ^{Tab 7}
Steinkohle	390,37	UBA 2019 ^{Tab 7}
Braunkohle	415,19	UBA 2019 ^{Tab 7}

_

³ Biogas in der Vor-Ort-Verstromung, deutschlandweit ca. 8.800 Anlagen

⁴ Biomethan: Aufbereitung des Biogases auf Erdgasqualität zu Biomethan und anschließender Einspeisung ins Erdgasnetz. Deutschlandweit ca. 200 Anlagen, davon 2 im Landkreis Lüchow-Dannenberg.

3. THG-Emissionsfaktoren in der Mobilität (Tabelle 3)

Energieträger	CO _{2äq} g/kWh	Quelle
Bioethanol (Abfall, Reststoff)	8,42	UBA 2019 ^{Tab125}
Biodiesel (Abfall, Reststoff)	24,73	UBA 2019 ^{Tab120}
Biomethan (Abfall, Reststoff)	33,08	UBA 2019 ^{Tab135}
Bioethanol (Mais)	38,23	UBA 2019 ^{Tab125}
Biodiesel (Raps)	102,10	UBA 2019 ^{Tab120}
Biomethan (Energiepflanzen)	129,79	UBA 2019 ^{Tab135}
CNG Erdgas	250,51	UBA 2019 ^{Tab135}
Diesel	301,33	UBA 2019 ^{Tab121}
Ottokraftstoff (Benzin)	301,33	UBA 2019 ^{Tab126}

In der Mobilität werden die THG oft nicht pro Kilowattstunde (kWh) Endenergie, sondern pro Fahrzeugkilometer (Fzg-km) ausgewiesen. Da dies abhängig ist vom

- a) Fahrzeugtyp und dessen Verbrauch
- b) sog. Heizwert⁵ des Kraftstoffes (durchschnittlich Superbenzin 8,5 kWh/l, bei Diesel 9,7 kWh/l, bei CNG⁶/Erdgas 12,8 kWh/kg und bei Autogas/Flüssiggas 6,9 kWh/l)

Nachfolgend wird ein Beispiel für die Umrechnung angeführt:

Energieträger	CO _{2äq} g/kWh Vorkette/ Hilfsenergie	CO _{2äq} g/kWh direkte Emissionen	CO _{2äq} g/kWh Gesamt	g CO _{2äq} pro Fzgkm Modell VW Golf inkl. Vorkette
Ottokraftstoff	42,13	259,2	301,33	151,12 g CO2äq (5,9 Liter/100 km) 8,5 kWh/Liter = 50,15 kWh pro 100km = 0,5015 kWh pro km
Diesel	34,93	266,40	301,33	137,38 g CO2äq (4,7 Liter/100km) 9,7 kWh/Liter = 45,59 kWh pro 100km = 0,4559 kWh pro km
CNG-Erdgas	48,91	201,60	250,51	122,75 g CO2äq

⁵ Der Heizwert bezeichnet den Energiegehalt eines Brennstoffes, der allein durch dessen Verfeuerung freigesetzt wird. Berechnet wird der Heizwert aus der - bei vollständiger Verbrennung - freiwerdenden Energie im Verhältnis zur Masse des eingesetzten Brennstoffes. Zu den Heizwerten von Brennstoffen gibt es teilweise unterschiedliche Angaben.

_

⁶ Compressed Natural Gas

Strommix in D			474	3,5 kg CNG/100km bei 14 kWh pro kg =49 kWh/100km = 0,49 kWh/km
im Jahr 2018			4/4	75,84 g CO2äq (16 kWh/100 km) =0,16 kWh/km
Strommix in D Im Jahr 2025 (Prognose Basis, Pehnt et al)			409	65,44 g CO2äq (16 kWh/100km) =0,16 kWh/km
Strommix in D Im Jahr 2030 Prognose GEMIS 4.95			374	59,84 g CO2äq (16 kWh/100km) =0,16 kWh/km
Biomethan (Energiepflanzen)	129,79	0	129,79	63,6 g CO2äq 3,5 kg CNG/100km bei 14 kWh pro kg =49 kWh/100km = 0,49 kWh/km
Strom bilanziell aus PV	66,73	0	66,73	10,67 g CO2äq (16 kWh/100km)
Strom bilanziell aus Wind (onshore)	10,497	0	10,497	1,68 g CO2äq (16 kWh/100km)

4. THG-Emissionsfaktoren von Nahrungsmitteln (Tabelle 4)

Nahrungsmittel	konventionell*	ökologisch*
Gemüse frisch	153	130
Gemüse TK	415	378
Gemüse Konserve	511	479
Tomaten	339	228
Kartoffeln frisch	199	138
Kartoffeln trocken	3.776	3.354
Pommes-frites TK	5.728	5.568
Brötchen, Weißbrot	661	553
Brot – Mischbrot	768	653
Teigwaren	919	770
Feinbackwaren	938	838
Milch	940	883
Joghurt	1.231	1.159
Quark & Frischkäse	1.929	1.804
Eier	1.931	1.542
Sahne	7.631	7.106
Käse	8.512	7.951
Geflügel	3.508	3.039
Geflügel TK	4.538	4.069
Schwein	3.252	3.039
Schwein TK	4.282	4.069
Rind	13.311	11.374
Rind TK	14.341	12.402

^{*}CO₂-Äquivalente in Gramm je Kilogramm Produkt nach Anbauweise

Quelle: GEMIS 4.4, Ökoinstitut

TK = Tiefkühlprodukt

Quellen

Umweltbundesamt (UBA 2019), Emissionsbilanz erneuerbarer Energieträger - Bestimmung der vermiedenen Emissionen im Jahr 2018, URL:

https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2019-11-07 cc-37-2019 emissionsbilanz-erneuerbarer-energien 2018.pdf (Abruf: 13.1.2020)

Tabelle 66: Primärenergiebezogene Emissionsfaktoren der Wärmebereitstellung aus fester Biomasse in privaten Haushalten und im GHD-Sektor

Tabelle 62: Emissionsfaktoren 37 der Wärmebereitstellung aus fossilen Energieträgern in privaten Haus-halten, im GHD-Sektor und der Industrie

Tabelle 91: Primärenergiebezogene Emissionsfaktoren der Wärmebereitstellung aus gasförmiger Biomasse

Tabelle 104: Primärenergiebezogene Emissionsfaktoren der Wärmebereitstellung aus Solarthermie

Tabelle 109: Primärenergiebezogene Emissionsfaktoren der Wärmebereitstellung mittels Wärme-pumpen

Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA 2019): Merkblatt zu den CO2-Faktoren vom 1.1.2019, URL: https://www.bafa.de/SharedDocs/Downloads/DE/Energie/eew_merkblatt_co2.html (Abruf: 10.2.2019)

Bundesumweltministerium (BMU 2016): Konsum und Ernährung, Klimabilanz für Nahrungsmittel aus konventioneller und ökologischer Landwirtschaft beim Einkauf im Handel, URL: https://www.bmu.de/themen/wirtschaft-produkte-ressourcen-tourismus/produkte-und-konsum/produktbereiche/konsum-und-ernaehrung/ (Abruf: 19.6.2020)